Borg Warner S476SX-E – 76mm Enhanced S400SX-E 10087
Found it for less but value our service?
Details
Borg Warner S476SX-E – 76mm Enhanced S400SX-E 10087 - 14009097014
The brand new 76.00mm S400SX turbocharger from BorgWarner is the 2nd largest T4 turbo in the AirWerks lineup, and ideal for people who require more airflow than the GTX42R or S400SX 74.56mm but also want better fitment than GTX45R. Using state-of-the-art blade aero on both the 76.00mm inducer/100.00mm exducer compressor and the 87.37mm turbine wheel, this turbo is designed for use in high power and high boost 800-1150+ whp applications.
The S400SX turbos share identical fitment as GT42R (5″ inlet compressor hsg inlet and 4″ V-Band turbine outlet) and is ideal for applications looking for T6 levels of power but with T4 spool and fitment. Journal Bearing and Oil Cooled only (watercooling and BB CHRA not applicable).
Compressor Specifications:
Compressor Type: Forged-Milled Wheel (FMW) Extended Tip
Compressor Wheel OD (exducer): 100.00mm
Compressor Wheel Inducer: 76.00mm
Max Flow Rate: 121 lb/min
Compressor Housing Connections:
Inlet: 5.5″ Hose Coupler
Outlet: 3″ Hose Coupler
Turbine Specifications:
Turbine Type: Inconel S400SX Turbine Wheel
Turbine Wheel OD: 87.37mm
Housing Material: D5S sandcast
Housing Size and A/R ratio: S400SX 10087 (S476SX-E T4) is available in four (4) different turbine housing configurations:
0.90 A/R T4 Single Scroll
1.00 A/R T4 Twin Scroll
1.10 A/R T4 Twin Scroll
1.25 A/R T4 Twin Scroll (Recommended for 30+psi Boost Levels)
About Twin Scroll: Twin Scroll turbo system design addresses many of the shortcomings of single scroll turbo systems by separating those cylinders whose exhaust gas pulses interfere with each other. Similar in concept to pairing cylinders on race headers for N/A engines, twin-scroll design pairs cylinders to one side of the turbine inlet so that the kinetic energy from the exhaust gases is recovered more efficiently by the turbine. For example, if a four-cylinder engine’s firing sequence is 1-3-4-2, cylinder 1 is ending its expansion stroke and opening its exhaust valves while cylinder 2 still has its exhaust valves open (while in its overlap period, where both the intake and exhaust valves are partially open at the same time). In a single scroll AKA undivided manifold, the exhaust gas pressure pulse from cylinder 1 is therefore going to interfere with cylinder 2’s ability to expel its exhaust gases, rather than delivering it undisturbed to the turbo’s turbine the way a twin scroll system allows.
The result of the superior scavenging effect from a twin scroll design is better pressure distribution in the exhaust ports and more efficient delivery of exhaust gas energy to the turbocharger’s turbine. This in turn allows greater valve overlap, resulting in an improved quality and quantity of the air charge entering each cylinder. In fact, with more valve overlap, the scavenging effect of the exhaust flow can literally draw more air in on the intake side while drawing out the last of the low-pressure exhaust gases, helping pack each cylinder with a denser and purer air charge. As we all know, a denser and purer air charge means stronger combustion and more power… but the benefits of twin scroll design don’t end there. With its greater volumetric efficiency and stronger scavenging effect, higher ignition delay can be used, which helps keep peak combustion temperature in the cylinders down. Since cooler cylinder temperatures and lower exhaust gas temperatures allows for a leaner air/fuel ratio, twin scroll turbo design has been shown to increase turbine efficiency by 7-8 percent (faster spool, quicker response) and result in fuel efficiency improvements as high as 5 percent. It is wise to size the turbine housing A/R larger than the single scroll turbine A/R typically used!
Airwerks® Series Turbochargers
Simple. Scalable. Strong.
Airwerks turbochargers are designed for the competitive motorsports market as well as drivers retrofitting a naturally aspirated engine or looking for a little more performance from a factory turbocharged car.
Engineered specifically for drag racing, pulling, and road racing, AirWerks turbochargers have earned a reputation as robust, brute-force induction systems. Looking for a no-frills replacement? Want to upgrade your turbocharger? Working with limited space? BorgWarner’s AirWerks turbochargers are the perfect go-to product for many applications.
With a twin hydrodynamic journal bearing design, AirWerks turbochargers feature an effective high-pressure ratio compressor stage, extended-tip technology and a high-efficiency turbine stage. The configuration provides ultra-fast response and more than 70 PSI of boost.
More Information
Part Number | 14009097014 |
---|---|
Brand | BorgWarner |
Type of Part | SX-E Series |
Length | 15.0 |
Width | 15.0 |
Height | 15.0 |
Weight | 40.000000 |
Reviews
Fitment
Borg Warner S476SX-E – 76mm Enhanced S400SX-E 10087 - 14009097014
The brand new 76.00mm S400SX turbocharger from BorgWarner is the 2nd largest T4 turbo in the AirWerks lineup, and ideal for people who require more airflow than the GTX42R or S400SX 74.56mm but also want better fitment than GTX45R. Using state-of-the-art blade aero on both the 76.00mm inducer/100.00mm exducer compressor and the 87.37mm turbine wheel, this turbo is designed for use in high power and high boost 800-1150+ whp applications.
The S400SX turbos share identical fitment as GT42R (5″ inlet compressor hsg inlet and 4″ V-Band turbine outlet) and is ideal for applications looking for T6 levels of power but with T4 spool and fitment. Journal Bearing and Oil Cooled only (watercooling and BB CHRA not applicable).
Compressor Specifications:
Compressor Type: Forged-Milled Wheel (FMW) Extended Tip
Compressor Wheel OD (exducer): 100.00mm
Compressor Wheel Inducer: 76.00mm
Max Flow Rate: 121 lb/min
Compressor Housing Connections:
Inlet: 5.5″ Hose Coupler
Outlet: 3″ Hose Coupler
Turbine Specifications:
Turbine Type: Inconel S400SX Turbine Wheel
Turbine Wheel OD: 87.37mm
Housing Material: D5S sandcast
Housing Size and A/R ratio: S400SX 10087 (S476SX-E T4) is available in four (4) different turbine housing configurations:
0.90 A/R T4 Single Scroll
1.00 A/R T4 Twin Scroll
1.10 A/R T4 Twin Scroll
1.25 A/R T4 Twin Scroll (Recommended for 30+psi Boost Levels)
About Twin Scroll: Twin Scroll turbo system design addresses many of the shortcomings of single scroll turbo systems by separating those cylinders whose exhaust gas pulses interfere with each other. Similar in concept to pairing cylinders on race headers for N/A engines, twin-scroll design pairs cylinders to one side of the turbine inlet so that the kinetic energy from the exhaust gases is recovered more efficiently by the turbine. For example, if a four-cylinder engine’s firing sequence is 1-3-4-2, cylinder 1 is ending its expansion stroke and opening its exhaust valves while cylinder 2 still has its exhaust valves open (while in its overlap period, where both the intake and exhaust valves are partially open at the same time). In a single scroll AKA undivided manifold, the exhaust gas pressure pulse from cylinder 1 is therefore going to interfere with cylinder 2’s ability to expel its exhaust gases, rather than delivering it undisturbed to the turbo’s turbine the way a twin scroll system allows.
The result of the superior scavenging effect from a twin scroll design is better pressure distribution in the exhaust ports and more efficient delivery of exhaust gas energy to the turbocharger’s turbine. This in turn allows greater valve overlap, resulting in an improved quality and quantity of the air charge entering each cylinder. In fact, with more valve overlap, the scavenging effect of the exhaust flow can literally draw more air in on the intake side while drawing out the last of the low-pressure exhaust gases, helping pack each cylinder with a denser and purer air charge. As we all know, a denser and purer air charge means stronger combustion and more power… but the benefits of twin scroll design don’t end there. With its greater volumetric efficiency and stronger scavenging effect, higher ignition delay can be used, which helps keep peak combustion temperature in the cylinders down. Since cooler cylinder temperatures and lower exhaust gas temperatures allows for a leaner air/fuel ratio, twin scroll turbo design has been shown to increase turbine efficiency by 7-8 percent (faster spool, quicker response) and result in fuel efficiency improvements as high as 5 percent. It is wise to size the turbine housing A/R larger than the single scroll turbine A/R typically used!
Airwerks® Series Turbochargers
Simple. Scalable. Strong.
Airwerks turbochargers are designed for the competitive motorsports market as well as drivers retrofitting a naturally aspirated engine or looking for a little more performance from a factory turbocharged car.
Engineered specifically for drag racing, pulling, and road racing, AirWerks turbochargers have earned a reputation as robust, brute-force induction systems. Looking for a no-frills replacement? Want to upgrade your turbocharger? Working with limited space? BorgWarner’s AirWerks turbochargers are the perfect go-to product for many applications.
With a twin hydrodynamic journal bearing design, AirWerks turbochargers feature an effective high-pressure ratio compressor stage, extended-tip technology and a high-efficiency turbine stage. The configuration provides ultra-fast response and more than 70 PSI of boost.